Exit

Category Archive: Bally Ribbon News

3-D Woven Composites: Characteristics & Uses

Utilizing 3-D woven composite structures in place of traditional metal or 2-D laminated composites can provide cost savings through both the manufacturing process and a product’s operational lifetime. In this blog, we’ll answer some basic questions about the emerging technology – and why it’s useful for a wide variety of applications

3D composite structure by BRM

 

What allows 3-D weaving to produce strong, complex, single-piece structures?

Most fabrics are woven in two dimensions – the X axis (length) and the Y axis (width) – but 3-D woven fabrics include weaving through the thickness, or the Z axis. By contrast, 2-D composites include a number of different layers of materials artificially bonded together; these layers can come apart from each other, or delaminate. 3-D weaving produces near-net-shape composite structures that are fully interconnected by their yarn, ensuring they retain strength and reliability.

What are some of the benefits of 3-D woven composites?

In addition to the elimination of delamination, the technology’s key benefits include weight reduction, reduced crack risk, lower production time, and cost reduction.

Lightweight. 3-D woven composites are dramatically lighter than metal structures. This is particularly relevant to the aerospace industry. Every pound of weight saved from an aircraft is estimated to save the aircraft’s operator roughly $1 million in operating expenses, primarily fuel, over that aircraft’s lifetime. Smart utilization of 3-D woven composite structures in aircraft design can reduce the weight of an aircraft by up to 30 percent, resulting in considerable operational cost savings.

Low crack risk. Due to curvature limitations in the layers, many 2-D shapes have considerable gaps in joints and intersections. These spaces and pockets are often filled with resin, which can crack. 3-D woven composites, even in complex shapes, have no empty pockets, as their structural integrity extends along all three axes. Crack rates are therefore far lower.

Quick production. 2-D composite production entails a long plying process. By contrast, 3-D weaving of composite structures is simpler, faster, and more cost efficient. The difference in a 3-D loom is that weft and warp yarns are not only woven together on one plane, but one plane is woven together with the next. Aside from designing a 3-D weave, which requires highly skilled design engineers, the 3-D weaving process is fully automated, drastically reducing manufacturing time.

Low cost. Indirect cost savings result from operational cost savings, for example reduced fuel. Plus, 3-D woven composites are stronger, more resilient, and less prone to breakage than 2-D laminated composites, so they can be replaced much less often, reducing replacement and maintenance costs.

What are some uses for 3-D woven structures?

3-D woven composites including orthogonal panels, thermal protection systems, near-net-shape, and complex net shape preforms are used for the aerospace, automotive, construction, military, and safety industries. For example, carbon fiber composites replace traditional titanium components in large aircraft engines to reduce weight, as these composite components are significantly lighter than comparable components in metal.

3-D weaving has been particularly successful in advancing aviation heat shield technology. BRM has woven quartz compression pads for NASA’s Orion capsule in order to ensure structural strength during launch and heat resistance during re-entry. NASA’s Heatshield for Extreme Entry Environment Technology (HEEET) program is developing a carbon thermal protection system (TPS) for extreme entries, intended to be capable of surviving the challenging environments of Saturn or Venus.

By Mark Harries

For more information about 3-D woven composites, and how they could improve your design, contact BRM today.

Bally Ribbon Mills embraces Six Sigma Methodology

Bally Ribbon Mills has effectively embraced the Six Sigma methodology for improved productivity, efficiency and cost savings which allows us to better serve the needs of our customers 

3.4

The central principle of Six Sigma is that data can be used to drive manufacturing to achieve at least six standard deviations between the mean and the nearest specification limit; in other words, to produce no more than 3.4 defects outside of customer specifications in each one million products.

1

Given the highly critical nature of BRM’s products, we deliver quality to meet industry standards including ISO 9001, AS 9100, and ISO 13485, plus MIL-I-45208 and MIL-Q-9858 for military products. We began experimenting with Six Sigma (6∑) by sending one employee for training. As a direct result, that individual worked on a project that saw a 77% decrease in waste in the production of a single item, and BRM chose to implement the methodology throughout our manufacturing.

 30%

After an additional two employees were trained as Six Sigma Black Belts, the company saw a 30% reduction in overall waste during the first two years of the program. We then decided to expand the program with training for additional team members, allowing us to distribute trained individuals across functional areas and industry focuses, so that the quality assurance (QA) program has both a broader impact across the company and a more targeted impact within individual sectors. Currently, BRM is training and adding more certified persons each year to the program.

 92%

The greatest impact of implementing 6∑ methodology has been the improvements in data collection and analysis. Using 6∑ statistical tools and methodology, our well-trained QA team can use the same data that most manufacturing facilities already collect and get to a better confidence level, lower material use, less waste, lower lead times, and reduced overproduction compared with other QA methodologies. Now, the QA teams work alongside the design and manufacturing teams to design new machine setups and more precise production from the very beginning. One project has reduced rejections by 80%, and another reduced the internal rejection rate by 92%.

Customer Impact

The 6∑ methodology had provided both BRM and our customers with better tools to work together while using the same language for goals and the process of achieving them. Customers are now able to discuss product developments via electronic communications, as our experts work on product development and quality management.

Additionally, the 6∑ QA efforts have reduced cost for customers due to greater manufacturing efficiency and greater confidence in tolerances such as thickness, weight, and tensile strength. 6∑ methodology has also enabled some BRM customers to achieve tighter tolerances for materials and design. BRM customers can have greater confidence in the products they receive from initial production runs, and can thus design their final products to be closer to their ultimate goals.

 

To learn more about BRM’s quality assurance and how it can benefit your product, contact us.

 

 

 

BRM Celebrates Success of HEEET Collaboration with NASA

“I think some of the NASA approach and mindset started to rub off on us, and we started to push what we could do even further into other projects.”

Bally Ribbon Mills’ Mark Harries recently spoke at NASA’s Ames Research Center in celebration of the Heatshield for Extreme Entry Environment Technology team of NASA and BRM scientists and their exceptional accomplishments over the last ten years. His remarks offer a helpful lens for understanding BRM’s dedication to innovation:

“The first meeting I ever attended with [NASA Ames Research Center engineer] Raj Venkatapathy and the Ames group was in 2010. I remember this meeting well, and tried to think about why this meeting stood out in my mind—I had been to many customer visits and sales calls—and I finally figured out what made this one so special. It was the extraordinary level of excitement and energy surrounding the whole meeting. From beginning to end, our engineers and the NASA engineers exchanged ideas. We realized, even at that early stage, that we had both found a great partner. The Ames group was excited because of our capabilities and past experience with complex highly technical weaving, and we were excited to embark on developing new technologies and ideas that had never been developed before, including finished parts, weaving techniques, and a new loom.

That first meeting went well, and honestly, the meetings kept going well. Here we are almost ten years later celebrating the HEEET program. And what an exciting 10 years it has been. We’ve learned a great deal about woven thermal protection systems (TPS) since the start.

There has been a lot of learning. We had made panels and 3D weaves before, and I think that’s what generated the initial interest in our company, but what the Ames group was asking for with the HEEET program went above and beyond anything else in our experience to that time.

The scale of everything was bigger than anything we had attempted up until that point. The loom was bigger. The amount of yarn and number of ends (or yarn per inch of material) was incredible. For example, the first iteration had a total of 25,000 ends to weave and interconnect and keep consistent tensions with. So, the loom needed to be specially designed to handle the complex and dense material. The loom is one of a kind in the world. And because science doesn’t stop at just good enough… we got even more complex. On the most current revision of HEEET, we weave 36,000 ends. It has two main parts, one for recession and the other for insulation and protection. On both sides, NASA and the Bally Ribbon Mills teams tackled each hurdle and ultimately were successful.

There were ups and downs and some big challenges. And we are so happy that we tackled those problems.  After each issue, whether related to yarn, machinery and equipment, or programming, we learned and catalogued and anticipated the next course of action. I think some of the NASA approach and mindset started to rub off on us, and we started to push what we could do even further into other projects. For me, as a small business owner, this is the most valuable result of our partnership with NASA. We pushed ourselves. We made things that we would have never been able to otherwise and as a result of that partnership, we are seeing great returns on that investment, because these products aren’t just useful for one application. There are commercial and government entities buying products as a direct result of our work and the advancement of our capabilities.

Our history with NASA is a long one. We’ve made parts for many missions including webbing for the deceleration systems on the mars rovers. When [Former astronaut and NASA Administrator] Charlie Bolden was at BRM in 2015, he gave us a terrific tag line: “the path to Mars goes through Bally, Pennsylvania.” And with HEEET, we want it to come back again too with the Mars Sample Return Mission!”

For more information about BRM’s work on the NASA HEEET Program, click here.

 

 

 

JEC World- International Composites Show

JEC World is a worldwide composites community with a networking hub of creativity, vision and action. The world of composites is dynamic, young and quickly growing into a vast range of markets, applications and technologies. At the forthcoming JEC World 2019 show Bally Ribbon Mills will showcase its 3D weaving capabilities for 3D woven joints, woven thermal protection systems and advanced woven composite 3D structures. In an article in Inside Composites you can read more about BRM showcasing at the JEC World show 2019.

 

 

Understanding Your Custom Weaving Options

Weaving is a textile production method that uses a loom to interlace two sets of yarn at right angles. To create fabric, the lateral yarn, called the weft, repeatedly crosses with the longitudinal yarn, referred to as the warp, which is held taught by the loom.

The process of weaving can be summarized in three steps:

  • Shedding — The warp ends are separated to clear a space for a pick
  • Picking — The pick inserts the weft through the shed
  • Beating — The reed pushes the weft up against the fell of the cloth completing one weave cycle

Although the basic weaving process is the same, the specific method in which the yarn is interlaced and propelled through the shed can change the characteristics of the finished fabric. Popular methods of weaving include the use of:

  • Shuttle loom
  • Shuttleless loom
  • Jacquard loom

Shuttle Loom

shuttleloomweaveThis conventional loom type – which includes hand looms, non-automatic power looms, and automatic weaving machines – interlaces the weft and warp yarn using a shuttle (usually made of wood). This method can manufacture seamless fabrics and tubular materials, making it suitable for critical applications requiring uniformity. It is slower than shuttleless looms.

Shuttleless Loom

This is a loom type which includes needle looms, rapier looms, and water/air jet looms. Its highly efficient operation increases production capacities while reducing large run labor costs. Needle loom models produce material with one woven edge and one knitted edge.

Jacquard Loom

A jacquard loom is a mechanical loom that simplifies the manufacture of complex patterns. Originally controlled by a sequence of hole-punched cards laced together, these looms now operate under CAD systems. They can be labor-intensive to set up initially. Jacquard weaving is a durable, high quality alternative to printed webbing, capable of producing a variety of weaves, designs, and logos from a single warp.

About Bally Ribbon Mills

Bally Ribbon Mills (BRM) is capable of each of these weaving methods, as well as specialty broadcloth, utilized for R&D and special projects with the ability to weave up to 72” widths. In addition to our diverse offering of weaving technologies, BRM provides a host of secondary processes such as dyeing, finishing, strap cutting, hole punching, and sonic welding.

For more information about weaving, download our free eBook, Shuttle Loom Weaving: Benefits for Critical Use.

New Call-to-action

Enhancing Our Capabilities to Meet NASA’s Needs

At Bally Ribbon Mills (BRM), we design, develop, and manufacture high quality engineered webbing, tape, and narrow fabric. While our products’ applications vary across a range of industries, we focus particularly on the technology needed to manufacture specialized webbing for critical use applications.

We are proud of the role our critical use products have played in the aerospace industry, as well as our trusted partnership with NASA on recent projects. Last year, NASA Administrator Charles Bolden visited our facility to support our work on a new space mission technology, declaring, “From this day on, the path to Mars goes through Bally, Pennsylvania.”

In order to enhance our product capabilities to meet NASA’s needs, we have been implementing innovative weaving technologies using high strength fibers such as Kevlar®, Technora®, and Vectran® to develop complex webbing for aerospace products.

adapt2These lightweight materials comprise 3-D woven fabrics and multifunctional thermal protection system (TPS) padding for NASA directed commercial sector space vehicles. Our TPS padding was selected as the critical component of the heat shield on the Orion Crew Capsule, which helps protect against the extreme temperatures of atmospheric re-entry during missions to the moon, asteroids, or Mars.

We provide customers with robust complex materials optimized for the low pack volume and high energy absorption that critical use applications demand. Our advanced launch and recovery decelerator webbing has been key to the successful design of space rocket launch vehicles and capsule recovery programs. We also design T, X, and Pi shaped webbing for lighter-than-air inflatable airships, surveillance aerostats, and NASA directed commercial sector space vehicles (COTS).

Our high performance webbing has appeared in a variety of other aerospace, space, and commercial applications such as parachutes, flight suits, seat belts, seat construction, cargo netting reinforcement tapes, and crew safety components. We ensure that all of our products pass strict Mil-Spec, PIA-Spec, and Department of Defense Berry Amendment requirements for the procurement of fabrics and textiles.

BRM was proud to be featured as a Phase II Company in NASA’s ­highly competitive Small Business Innovation Research (SBIR) program for our four year support of the Orion project, as well as our current work for an upcoming EM-1 mission. We are grateful for NASA’s commitment to integrating small businesses into its contractor base, and we are dedicated to leveraging our unique strengths to help pioneer the future of space exploration.

Want to Learn More?
Since 1923, Bally Ribbon Mills has been a leader in the design, development, and manufacture of 2-D and 3-D specialty webbing. Our custom engineering and diverse weaving technologies enable us to provide advanced products for both commercial and critical use applications.

To learn more about how 3-D woven composites outperform their metallic counterparts to support critical use applications, download our eBook “The Benefits of 3-D Woven Composites.”

Benefits of 3-D Woven Composites

What is Webbing?

Webbing is a strong woven fabric distinguishable by its assorted material compositions, strength differences, and widths. Appearing across a broad range of applications and industries, webbing can be found in military gear, hiking and camping gear such as harnesses, and automotive safety features like seatbelts.

Once made of natural fibers such as cotton or flax, modern webbing is now usually made of fibers including strands of nylon or polyester woven on a loom to create flat strips. For extreme applications, webbing is even available in high-strength materials such as Dyneema® and Kevlar®.

Types and Properties of Webbing

There are two basic types of webbing, identifiable by their shape and distinct physical properties:mil_spec_webbing

  • Flat webbing (or solid webbing) – Fibers solidly woven to create flat webbing.

Properties: Available in different breaking strengths, this style can carry out a number of basic applications. While the flat shape is well suited for applications in which material is sewn directly into a larger product, it can be susceptible to abrasion due to its stiffer nature in comparison to tubular webbing.

  • Tubular webbing – Generally thicker, this type of webbing is known to be more flexible than flat webbing.

Properties: Soft and pliable, this style allows for a variety of uses in comparison to its flat counterpart. It is also less susceptible to wear and tear, and is able to handle dynamic functions, such as holding knots.

Applications

Webbing is an adaptable component that appears in a diverse range of applications. Examples of common industries and specific uses include:

  • Military – Specialized Mil-Spec and PIA-Spec (Parachute Industry Association) narrow webbing is manufactured as Class 1 (critical use, shuttle loom) or Class 1a (critical use, shuttleless / needle loom) to deliver payloads safely and reliably.
  • Aerospace – High strength specialty webbing appears in parachutes, flight suits, seat belts, cargo netting reinforcement, and crew safety components.
  • Safety webbing – Webbing enables civilian safety through applications such as chin and shoulder straps, lap belts, harnesses, binding tapes, and shock absorbing webbing.
  • Commercial webbing –Webbing is found in everyday commercial applications such as backpack straps and pet leashes.

About Bally Ribbon Mills

With almost a century of experience designing, developing, and manufacturing woven webbing, Bally Ribbon Mills can meet all of your webbing needs, from everyday applications to highly-specialized Mil-Spec and PIA-Spec components. Our team works tirelessly to ensure we are an industry leader among specialty textiles.

webbingTo learn more, download our guide, Webbing 101: Properties, Materials, and Techniques today.

Why 3-D Woven Composites Surpass its Metallic Counterpart

3-D weaving is a cutting edge process that offers consumers joints and other parts with an optimal blend of strength, durability, and structural integrity.

Ideal for use within the aerospace industry, 3-D woven joints are considerably lighter than traditional metal joints without sacrificing exceptional strength and durability. This, unsurprisingly, results in a great deal of cost savings for the aerospace industry and the businesses involved within it.

Three-dimensional weaving offers a range of benefits for consumers, each of which saves cost and enhances product performance. Employing a 3-D woven composite in lieu of metallic structures will offer consumers a material that is lightweight, stronger than its metallic counterparts, and free of corrosion. In fact, the utilization of three-dimensional structures and fabrics may lead to a 30% reduction in aircraft weight and, subsequently, a reduction in total operational costs spent during an aircraft’s lifetime.

Employing a 3-D woven structure is the simplest and most efficient method of incorporating composite parts into future products. 3-D woven composites are produced near-net shape, meaning the composite requires minimal processing to be installation ready. 2-D laminated composites, on the other hand, require a lengthy and technically challenging lamination process. Cutting out the lengthy processes associated with 2-D composite methods means saving energy, time, and, subsequently, money.

3-D woven composites are completed as one piece — they do not require cutting, plying, or stitching, as 2-D laminated composites do, and require minimal machining. Without multiple layers laminated together, 3-D woven composites cannot become delaminated. The inherent inability of 3-D woven composite structures to delaminate is arguably one their greatest advantages. Design flexibility and the capacity to tailor composite properties to specific applications are also crucial 3-D weaving benefits.

Employment of 3-D woven joint technologies can provide enhancements in damage resistance without sacrificing weight. At Bally Ribbon Mills, our advanced products group has developed the technology to 3-D weave intricate net shapes, including pi (π), “T,” double “T,” “H,” and more.

brm_3dcompositesBally Ribbon Mills has played an essential role in the design, development, and manufacture of specialized products for a range of industries since 1923. We are committed to providing high quality materials with exemplary efficiency.

To learn more about the benefits of 3-D composite structures, download our eBook The Benefits of 3-D Woven Composites.

What Are The Advantages of 3-D Composites Over 2-D?

Discover how 3-D composites create product consistency in the aerospace industry.

adapt2Composite parts are specially engineered components made of two or more polymers with different physical and chemical properties. These compositions make up a broad range of aerospace components, including wings, tails, fuselages, and propellers. Though manufacturers have traditionally fabricated compositions with 2-D laminated composite parts, newer 3-D continuously woven structures are becoming the aerospace trend.

Conventional 2-D compositions can present a number of challenges, including structural delamination and cracking, lack of broad use from one project to the next, high costs, and a significant time investment to create the compositions. To remedy these common 2-D problems, manufacturers are now embracing 3-D woven composites, as an improvement to the traditional 2-D joints and a solution to their associated weaknesses.

2-D compositions typically fail manufacturers in two ways: cracking and delamination. In aerospace applications, repeated cyclic stress and impact causes separation and fraying of the composite layers. Unlike solid metals, compositions are weak and unable to contort to absorb kinetic energy. The inability to adjust to this impact creates fractures in the composition’s surface, known as matrix cracks.

Once a 2-D composite begins to develop small transverse matrix cracks, any additional impact will cause them to extend to neighboring plies with different fiber orientations, thus beginning the delamination process. The initial matrix crack that starts this process is called the critical matrix crack. Once this crack has developed, delamination will continue to spread and damage the other composition joints over time.

The higher damage resistance and greater fracture toughness of 3-D woven composites can reduce the prevalence of – or even entirely eliminate – many of these issues. The interlocking 3-D-woven reinforcement gives composite materials stronger out-of-plane properties to protect from warping and delamination.

In comparison to 2-D compositions, 3-D woven composites offer enhanced performance over 2-D alternatives, and the ability to rapidly produce materials using 3-D weaving compresses lead times and reduces overall labor and tooling costs.

brm_3dcompositesBally Ribbon Mills (BRM) creates these intricate composites using a 3-D continuous weaving technique. With our experience developing quasi-isotropic technology for the US Air Force Research Lab and recently completing a 3-D woven materials contract for NASA’s space flight applications, we are a trusted supplier on the cutting edge of high performance structural composite parts.

To learn more about the advantages of 3-D weaving, download our eBook The Benefits of 3-D Woven Composites for more information.
Download The Benefits of 3-D Woven Composites

SONACA and BRM Win The JEC 2016 World Innovation Award – Space Category

After 4 years of intensive collaboration in developing an innovative cryogenic upper interstage composite ring demonstrator for new space launchers, SONACA (Belgium) and BRM (USA) win the JEC 2016 world innovation award in the space category. BRM

The development optimized the cross section of a circular 4.3 meter diameter ring. This resulted in an important weight saving at an affordable price.

The innovation consisted of making the best choice of composite materials and manufacturing processes (Weaving, Injection), validated by suitable simulations and tests, while ensuring the challenging industrial requirements were met (Net shape part, logistics, final assembly). The most advanced 3D orthogonal weaving process was used to produce a demonstrator ring with 90° segments based of carbon fiber dry preforms. Each segment was injected using Resin Transfer Molding process (RTM). The four segments were then assembled together by splicing.

SONACA and BRM signed a partnership agreement to consolidate the progress already achieved in the field of advanced structural composite parts, in order to offer high quality and competitive advanced composite structures to their customers.

Press contacts

BRM – Leon Bryn – T +1 610 845 2211 – M +1 267 918 3333

leonbryn@ballyribbon.com

SONACA – Dorian Stuyts – T +32 71 255 749 – M +32 474 977 835

dorian.stuyts@sonaca.com

About BRM

BRM designs, develops and manufactures specialized woven webbing, narrow fabrics, specialty 2D and 3D woven engineered textiles and 3D complex woven structures. Since 1923 BRM has a long history of providing textiles to the world. Its group of 300 talented product designers, technicians, and engineers provide unrivaled experience to solve customer design challenges.

www.ballyribbon.com

About SONACA Group

SONACA Group is a global Belgian company active in the development, manufacturing, and assembly of advanced structures for civil, military, and space markets. The group is especially known for its wing movables expertise where it is regarded the world leader serving most of the primes with a market share of over 50%. It has production facilities in China, Europe, North-America, and South-America and employs over 2500 people including 350 engineers. In response to strong demand from its customers, SONACA Group today also supplies engineering services, large sheet metal elements, wing plank, composite structures, and machined components.

www.sonaca.com

“The need of such a cost effective and lightweight structural component is clearly expressed by the aerospace OEMs; it is definitely a value adding innovation, now ready for our customers.”

Hugues Langer, SONACA Development & Innovation director

“3D orthogonal woven preforms with carbon fiber combined with RTM process confirms its promises for the manufacturing of CFRP composite parts. This technology can also be used with other advanced fiber, opening innovative applications.”

Bernard Poulaert, SONACA Space projects Manufacturing manager

“Our Engineering, Prototype and Test teams contributed strongly to this ESA R&D project. They are everyday also offering their agile skills and expertise to companies that are targeting to consolidate their advance in their respective markets through SONACA Engineering & Test Services. Their combined expertise and agility can be used by worldwide organizations.”

Jean-Louis Magerman, SONACA Prototype and Test Services manager

To view the official press release, click here.

Need help finding
the right product?

Cut your research time in half by
downloading our Webbing 101 Guide. Download eBook

Inside, we highlight topics such as:

  • Common Specifications: (Mil-Spec, PIA, & UL)
  • Fabrication Methods: (Braiding, Jacquard Loom, Shuttle Loom, etc.)
  • Weave Types: (Basket, Plain, Satin, Twill)

Additional Resources

Understanding the  Versality of 3D Woven  CompositesDownload eBook Benefits of shuttle  Loom WeavingDownload eBook